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Abstract 

Intracellular calcium ions are key second messengers and play an important role in malignant transformation 
and cancer progression. Estrogen can evoke intracellular calcium increases through membrane-initiated effects 
and activate subsequent kinase cascades within minutes in normal and cancerous epithelial cells. Ca2+-related 
proteins are expressed in normal epithelial cells or endometrial cancer cells, some of which are upregulated by 
estrogen. Both estrogen-induced transient calcium increases and long-term changes in protein expression 
levels may be involved in regulating cancer initiation, progression and metastasis. Calcium channel blockers are 
reported to regulate both the rapid estrogen-induced intracellular Ca2+ increase and cell proliferation, 
apoptosis and migration, thus having the potential for pharmacological modulators to be repurposed for the 
treatment of endometrial cancer. 
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Introduction 
Endometrial cancer (EC) is one of the most 

common gynecological malignancies worldwide and 
is a global threat to women’s health and well-being. 
Approximately 420000 patients were newly 
diagnosed with EC in 2020, accounting for 4.5% of all 
cases in women [1]. Calcium ions are ubiquitous 
intracellular messengers that regulate a myriad of 
cellular processes and can affect cell survival. Our 
previous studies have identified serum calcium ion 
level as a potential predictor for lymph node 
metastasis and positive peritoneal cytology in 
endometrial cancer, suggesting that calcium ions 
participate in the progression of EC [2, 3]. 

Calcium homeostasis is a crucial determinant of 
cellular function and survival. Calcium ions in the 
cytosol are dynamically regulated by the plasma 
membrane, endoplasmic reticulum and mitochondria. 
A sustained calcium increase from extracellular 
calcium entry or release from calcium stores can affect 
cancer cell growth, migration, distant metastasis, and 
survival [4-6]. The cytosolic calcium concentration is 
tightly regulated by ion channels, pumps and 
exchangers [7]. Our previous work suggested that 

inhibitors of L-type voltage-gated calcium ion 
channels and transient receptor potential vanilloid 4 
(TRPV4) could partly block calcium influx in EC cells 
[8, 9]. In this review, we summarize the latest studies 
on calcium signaling, differentially expressed 
calcium-related proteins and their functions in cancer 
progression as well as the potential for 
pharmacological application. 

Relationship between estrogen and calcium 
signal 

Clinically, prolonged estrogen stimulation 
without progesterone antagonism increases the risk of 
endometrial cancer and estrogen-dependent cases 
represent 75-90% of all endometrial cancers [10]. Our 
previous work suggested that endometrioid 
carcinoma had higher serum calcium levels than non- 
endometrioid carcinoma, the subtype that usually 
suffers from estrogen deprivation [11]. Estrogen is an 
important hormone that rapidly induces calcium 
mobilization and regulates calcium-related protein 
expression in the endometrium [12-14]. On the one 
hand, estrogen stimulus drives calcium influx, and 
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rapidly augmented calcium triggers a series of 
reactions, which are a main part of non-genomic 
effects. Any dysfunction of this process may 
contribute to cancerous transformation and 
progression. Often, the rapid Ca2+ surge causes 
photophosphorylation of kinase cascades and 
regulates transcription factors, thus affecting cellular 
processes and function. On the other hand, long-term 
estrogen stimulus causes some calcium-related 
protein changes in normal endometrial epithelial cells 
(EECs) and cancer cells [14, 15]. Sustained high Ca2+ 
exerts its influence on both epithelial cells and the 
microenvironment [16, 17]. However, it remains 
uncertain whether estrogen-induced short-term 
effects and long-term regulation of calcium function 
together in the occurrence and progression of 
endometrial cancer. 

Estrogen-induced rapid intracellular calcium 
increases in endometrial cells 

Intracellular calcium is measured by the 
accumulation of 45Ca2+ and calcium fluorescent 
probes, such as fluo-2, fluo-3, fluo-4 and fluo-8. 
Estrogen-induced rapid increases in intracellular 
calcium have been detected in endometrial epithelial 
cells isolated from the uteri of rats and RL95-2 cells (a 
poorly polarized human endometrial cancer cell line) 
[12, 13]. Moreover, Zhang LL et al demonstrated that 
both E2 and its membrane-impermeable conjugate, 
estrogen and bovine serum albumin (E2-BSA), can 
elicit calcium influx in Ishikawa cells, a moderately 
polarized endometrial cancer cell line [18]. It appears 
that estrogens may act directly at the cell membrane 
and exert effects on the activity of ligand-gated ion 
channels. Transient increases in intracellular free 
calcium are reported to precede or trigger the cell 
cycle and growth, which is exactly the end-point of 
estrogen effects on the endometrium [19]. Figure 1 
illustrates estrogen-induced intracellular calcium 
increases in endometrial cancer. 

The addition of 17β-estradiol at a final 
concentration of 1 nM increased 45Ca2+ uptake, 
reaching a peak at about 230% of baseline within 30 
minutes. 45Ca2+ uptake was gradually restored to 
baseline in rat EECs [13]. About 15% of RL95-2 cells 
were responsive to 17β-estradiol stimulus and 
showed transient intracellular calcium rises within 10 
minutes with a maximal value about 130% of 
baselines obtained at a concentration of 10 nM [12]. 
Intracellular calcium peaked at about 300 seconds and 
lasted for 600 seconds after adding E2 or E2-BSA to 
Ishikawa cells. Interestingly, calcium waves showed 
two peaks under E2-BSA stimulation [18]. The 
different amplitudes and rates may be partly due to 
the concentration of estrogen. 

 

 
Figure 1. Estrogen-induced rapid calcium changes in endometrial cells. 
Estrogen can rapidly trigger an increase in intracellular calcium in endometrial cells 
through membrane-initiated signaling. Intracellular calcium mobilization is mediated 
by different signals: ① GPER1- Gα-CACNA1D; ② GPER1- Gα-PLC-IP3-IP3R-Ca2+ 
store; and ③ mER-PLC-IP3-IP3R-Ca2+ store. The degree of increase in cytosolic free 
Ca2+ and duration of maintenance vary in different cells. Increased intracellular 
calcium activates the MAPK pathway and regulates the expressions of Bcl-2, CREB, 
and so on. (Created with BioRender.com) 

 

Source of estrogen-induced intracellular 
calcium increase 

The estrogen-evoked Ca2+ increase may occur as 
a result of Ca2+ entry from the extracellular milieus or 
Ca2+ release from intracellular sources. Morley 
demonstrated that the estrogen-triggered calcium 
surge was not affected by incubating the cells in 
Ca2+-free solution or pretreating cells with calcium 
channel blockers (CCBs) but was abolished by 
incubating cells with inhibitors of inositol 
phospholipid hydrolysis in chicken granulosa cells 
[20]. Teresa et al. demonstrated that E2 could induce a 
rise in intracellular calcium in the presence or absence 
of extracellular calcium [21]. These results imply that 
estrogen induces Ca2+ mobilization mainly from 
intracellular stores. 

However, some studies identified that an 
estrogen-induced calcium rise had a critical 
dependence on external calcium. Estrogen was also 
reported to increase the activity of plasma membrane 
calcium pumps in distal tubule kidney cells [22]. 
Additionally, E2-induced rapid Ca2+ influx in 
hippocampal neurons and endometrial cancer cells 
could be significantly inhibited by nifedipine, a 
calcium channel blocker [18, 23]. Wu TW et al found 
that the initial influx of Ca2+ through the L-type 
calcium channel is necessary for E2 activation of 
downstream signals [23]. Moreover, 17β-estradiol 
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increased intracellular Ca2+ in a biphasic manner 
through extracellular calcium entry and endoplasmic 
reticulum release in rat osteoblasts [24]. 

In normal EECs, E2 induced 45Ca2+ uptake from 
the medium [13]. In RL95-2 cells, 17β-estradiol could 
not induce calcium transients when the RL95-2 cells 
were bathed in external Ca2+-free medium, implying a 
dependence on calcium entry. However, the calcium 
surge was significantly increased by depletion of 
intracellular calcium stores and decreased after 
treatment with an inhibitor of protein kinase C (PKC), 
which suggested that calcium release from 
intracellular stores via the PKC-sensitive pathway 
contributed to E2-induced intracellular calcium 
increases [12]. Similarly, E2-BSA elicited a dual peak 
in Ishikawa cells, the first coming from external 
calcium influx and the second releasing from 
intracellular calcium stores [18]. In summary, the two 
sources may also coexist in endometrial cells. 

Receptors that mediate estrogen-induced 
calcium increase in endometrial cells 

There is no consensus regarding which receptors 
should be responsible for the rapid Ca2+ rise. As a 
membrane-initiated effect, membrane estrogen 
receptor (mER) is widely investigated. Endometrial 
cells show abundant binding to estrogen on the cell 
surface [25]. Several variants of ERα and ERβ as well 
as estrogen receptor G protein-coupled estrogen 
receptor (GPER1, also known as GRP30) have been 
reported to be associated with non-genomic estrogen 
signaling [26-28]. 

Classical mERs are identical to nuclear estrogen 
receptor (nER) in not only spectra, weight and affinity 
to estrogen, but also in their protein epitopes [29, 30]. 
ERα and ERβ were detected in endothelial cell 
caveolae [31, 32]. Without the transmembrane 
domain, classical ERs may interact with the plasma 
membrane by covalent binding to membrane proteins 
such as caveolin-1 [33]. ERαs translocation to the 
membrane is dependent on direct binding to 
caveolin-1. The complex formed by ERα, Src 
homology and collagen homology (Shc), and insulin- 
like growth factor receptor-1 (IGF-1R) increases the 
mERα levels within caveolae rafts of the plasma 
membrane once stimulated by estrogen [34]. In 
Ishikawa cells, rapid estrogen-induced calcium 
mobilization could be partly inhibited by the ER 
antagonist, ICI182780 [18]. E2/ERα activates 
phospholipase C (PLC)-dependent inositol 1,4,5- 
trisphosphate (IP3) production mediated by Gαi/o 
proteins, thus causing Ca2+ store release. E2-induced 
calcium mobilization was completely blocked by 
U73122, a PLC inhibitor in ERα-overexpressing COS7 
cells [35, 36]. In addition, the pattern of testosterone 

action offers another possibility of regulating calcium 
flux in prostate cells. The N-terminal region of 
androgen receptor (AR) has specific sites for transient 
receptor potential melastatin 8 (TRPM8) and the 
accumulation of the TRPM8-AR complex in lipid rafts 
mediates testosterone-induced cell migration [37]. A 
previous study identified several calcium binding 
sites in the ERα ligand binding domain [38]. 
Moreover, calmodulin regulates the calcium- 
dependent activation of ERα by directly binding to 
ERα at several sites [39]. 

As a novel estrogen receptor, GPER1 is reported 
to participate in estrogen-triggered non-genomic 
effects in ovarian cancer [40], ER-negative breast 
cancer [41] and thyroid cancer cells [42]. GPER1 can 
regulate intracellular free calcium by (1) activating 
membrane ion channels, (2) regulating Ca2+- 
calmodulin interactions or (3) triggering Ca2+ store 
release [43, 44]. In endometrial cancer cells, the GPER 
agonist G1 facilitated the expression of CACNA1D, 
while E2-BSA-activated CACNA1D was blocked after 
silencing the GPER1 gene [8]. Likewise, E2 promoted 
CACNA1D expression in a time-dependent and 
dose-dependent manner and triggered Ca2+ influx 
through GPER1 in breast cancer cells [45]. GPER1 
regulates the activity of L-type VGCCs through 
coupling with Gαs and Gαi/o and triggers 
subsequent Ca2+ entry [43]. GPER1 can also be directly 
regulated by the Ca2+-calmodulin complex because of 
the existence of four distinct calmodulin-binding 
domains in GPER1, as feedback to the E2-induced 
calcium increase [46]. As a seven-transmembrane 
receptor, GPER1 stimulates the production of PLCβ 
and IP3 through coupling with Gβγ. The latter binds 
to its receptor IP3R1 situated on the endoplasmic 
reticulum and evokes Ca2+ release [47]. 

Estrogen might directly bind to certain calcium 
channels. Estrogen, as a lipophilic hormone, affects 
membrane fluidity, induces membrane fusion and 
modifies ion channel activity [48]. As early as 1986, 
Kenji et al reported that calcium channels of the 
estrogen groups in the rat uterus were at a high 
affinity state, without changing the numbers of 
calcium channels [49]. E2 was reported to directly 
activate the Maxi-K+ channel [50]. In hippocampal 
neurons, estrogen could directly interact with the 
L-type calcium channel alpha 1C subunit 
(CACNA1C) at the dihydropyridine site in an 
estrogen receptor-independent way [51]. 

Activated kinase cascades by estrogen-induced 
calcium signaling 

Mitogen-activated protein kinase (MAPK) 
cascades mainly consist of four pathways: 
Extracellular-signal-regulated kinase (ERK) 1/2, 
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ERK5, p38 MAPK and c-Jun N-terminal kinase (JNK) 
[52]. E2-induced activation of MAPK cascades can be 
observed among four endometrial cancer cell lines 
[12, 18, 53]. Accumulating evidences show that E2 can 
rapidly activate MAPK and in an ER-dependent 
manner in mammalian cells [54-56]. However, the 
molecular mechanisms underlying E2-triggered 
MAPK activation and its biological effects remain to 
be explained. 

In MCF-7 breast cancer cells, MAPK activation is 
preceded by a rapid increase in cytosolic calcium from 
Ca2+ stores in response to estrogen stimulus [21]. In 
Ishikawa cells, either E2 or E2-BSA could induce 
ERK1/2 phosphorylation [18]. Notably, c-Src 
activation triggered by estrogen could lead to parallel 
activation of ERK1/2 and Akt signals [57]. The same 
hippocampal neurons were successively stained with 
a calcium probe and immunocytochemistry for pERK. 
The results confirmed that the E2-triggered calcium 
increase was coincident with pERK [23]. 

Activated MAPKs can translocate into the 
nucleus and regulate gene transcription, thus playing 
critical roles in cell proliferation, the cell cycle and 
apoptosis. Rapid activation of MAPK induced nuclear 
factor kappa B (NF-κB) activation, CD1 transcription 
and subsequent cell cycle progression in Swiss 3T3 
cells [58]. Treatment with a MAPK inhibitor 
significantly suppressed E2-facilitated proliferation in 
lactotrophs and breast cancer cells, indicating an 
important role of the MAPK pathways in 
E2-dependent progression [30, 59]. Ca2+/Src/ERK 
signaling is required for the E2-induced activation of 
B-cell lymphoma-2 (Bcl-2), an apoptosis regulatory 
protein [23]. Interestingly, E2 results in increased 
mitochondrial sequestration of Ca2+ to attenuate 
cytosolic Ca2+ and a subsequent increase in Bcl-2 
expression, aiming to promote mitochondrial 
tolerance and cell survival in response to glutamate 
[60]. nERs also interacted with MAPK cascades. In 
MCF-7 cells, ERK2 and ERK5 interacted with different 
regions of nERα. Upon E2 exposure, activated ERK2 
and ERK5 localize with nERα and modulate estrogen- 
dependent gene transcription and cell proliferation 
programs [61, 62]. In addition to directly binding to 
ERα, MAPK cascades can indirectly regulate ERα 
transcriptional activity by targeting several cofactors 
[63]. P38 MAPK and ERK1/2 are involved in 
hormone-induced activation of c-fos in rat intestinal 
cells [64]. Transient calcium markedly upregulated 
the expression of semaphorin 3A through the MAPK/ 
activator protein (AP)-1 axis in keratinocytes [65]. 

There are other E2-induced kinases that are 
closely associated with the intracellular Ca2+ rise. In 
myometrial cells, the G1-induced intracellular 
calcium increase occurred prior to myosin light-chain 

kinase (MLCK) phosphorylation. Thereafter, MLCK 
became desensitized to Ca2+/calmodulin and began 
dephosphorylation [66]. These results described the 
dynamic change in estrogen-induced calcium and its 
effects on cell movement. Cytoskeletal 
rearrangements induced by E2 and tamoxifen could 
be blocked by a Src inhibitor, implying the important 
role of Src kinase in estrogen-induced rapid effects in 
endometrial cancer cells [53]. 

Alterations in calcium channels/pumps/ 
exchangers in endometrial cells 

Cytosolic Ca2+ signaling is coordinately 
controlled by both intracellular and extracellular 
stores. In most mammalian cells, external stimuli bind 
to ligand-engaged G protein-coupled receptors 
(GPCRs), causing subsequent synthesis of IP3 and 
activation of the IP3 receptor at the endoplasmic 
reticulum membrane, resulting in the release of 
calcium from the endoplasmic reticulum [67, 68]. 
Extracellular calcium ions can enter the cytosol 
through multiple voltage-gated calcium ion channels 
(VGCC) and transient receptor potential (TRP) family 
channels. Two main ATP-dependent systems extrude 
Ca2+ from the cytosol: plasma membrane Ca2+ 
ATPases (PMCAs) and sarcoendoplasmic reticular 
Ca2+ ATPases (SERCAs), the former expelling Ca2+ to 
the extracellular space and the latter accumulating 
Ca2+ within the endoplasmic reticulum [69]. Together, 
these calcium channels/pumps/exchangers struggle 
to maintain dynamic homeostasis. Any dysfunction of 
these calcium-related proteins may result in a 
disruption of calcium balance. Therefore, we 
summarize the expression of calcium-related genes in 
tissue or cell line(s) of endometrium, their effects on 
biological behaviors and associations with E2 in Table 
1 and Figure 2. 

Voltage-gated calcium channels 
Although VCGGs are ubiquitously expressed in 

excitable cells, they are also detected in many kinds of 
malignant cells [70]. VGCCs are subdivided into 
L-type, T-type, P/Q-type, R-type and N-type. 
CACNA1D is an auxiliary member of the alpha-1 
subunit family of the VGCC complex and is involved 
in androgen-stimulated Ca2+ influx and androgen 
receptor transactivation in prostate cancer [71]. 
17β-estradiol was added to the medium after 
pretreatment with nifedipine, a blocker targeting 
CACNA1D and other L-type calcium channels. The 
mRNA expression of CACNA1D returned to normal 
at 30 minutes and protein expression started to rise 
after 60 minutes in Hec-1A cells, suggesting that 
estrogen regulates the expression of CACNA1D in a 
rapid manner [72]. Next, the effect of CACNA1D on 
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the estrogen-induced intracellular calcium increase 
was investigated. After knocking down CACNA1D, 
the intercellular free calcium concentration was 
significantly reduced in Ishikawa cells compared to 
the negative control group. Compared to the benign 
endometrial tissues, atypical hyperplasia and 
carcinoma tissues have a higher expression of 
CACNA1D. Moreover, genetic knockdown of 
CACNA1D inhibited the estrogen-induced growth 
and migration of Ishikawa cells [8]. Calcium channel 
alpha1G (CACNA1G), a subunit of T-type VGCCs, is 
also regulated rapidly by estrogen in Hec-1A cells 
[72]. 

In contrast, another VGCC, calcium channel 
alpha 2 delta subunit 3 (CACNA2D3), suppressed cell 
proliferation and migration, and induced cell 
apoptosis and Ca2+ influx in EC by acting as the 
downstream of progesterone. The expression of 
CACNA2D3 was downregulated in EC tissues and 
cells compared with noncancer tissues or endometrial 
epithelial cells [73]. 

TRP ion channels 
TRP ion channels consist of a superfamily of 

several cation channels (TRPC, TRPV, TRPM, TRPA, 
TRPP, and TRPML) and can be activated by various 
stimuli [74, 75]. TRP vanilloid 1 (TRPV1) is involved 
in the reduction in cell viability and the activation of 
the apoptotic pathway induced by its agonist 
cannabinoids (CB) in endometrial cancer cells. After 
exposure to CB, a rapid increase in intercellular 
calcium levels was detected and a TRPV1 antagonist 
was able to reverse these effects [76]. In rat 
endometrial cells, about 11% of cells were responsive 
to capsaicin, the TRPV1 activator, and showed a rapid 
calcium influx. E2 and ERα/ERβ agonists both 
upregulated TRPV1 mRNA [14]. Notably, E2, not 
E2-BSA, prevented capsaicin from activating TRPV1 
channels through ERβ signaling in neurons [77]. 
Therefore, the E2/ERβ complex might regulate 
TRPV1 activity and modulate rapid calcium entry in 
some endometrial cells. 

 

Table 1. Altered Ca2+ channels/pumps and their functions in endometrial cells 

 Calcium channel/ 
pumps 

Differential expression in EC 
tissues comparing to normal  

Effects on biological behavior E2 effects on Ca2+ channels/pumps ref 
E2 stimulation Cell line(s) 

VGCC CACNA1D ↑  promotes proliferation, migration and apoptosis and 
estrogen-induced Ca2+ influx in ISK cells 

↑ ISK [8] 

CACNA1G ND promotes proliferation, migration and apoptosis ↑ ISK [72] 
CACNA2D3 ↓  suppresses cell proliferation and migration, and induce 

apoptosis and Ca2+ influx in ISK and RL95-2 cells 
ND ND [73] 

TRP TRPV1 ND reduces viability of Ishikawa and Hec50co cells ↑ Rat EEC [14] 
TRPV2 ↑ in non-endometrioid tissues promotes migration and chemo-sensitivity in ISK cells ND ND [5] 
TRPV4 ↑  promotes migration in ISK and Hec-1A cells ND ND [9] 
TRPV6 ND ND ↑ ISK [15] 
TRPM4 ↓ suppresses proliferation and migration in AN3CA cells ND ND [83] 

 
TRPA1 ND ND ↑ Rat EEC [14] 

 
Pump(s) PMCA1 ND ND ↑ ISK [15] 

NCKX3 ND ND ↑ ISK [84] 

↑ increased levels in cancer sample; ↓ decreased levels in cancer samples; ND, not determined; ISK, Ishikawa; EEC, endometrial epithelial cell; EC: endometrial cancer; 
VGCC: Voltage-gated calcium ion channels; CACNA1C: Calcium channel alpha1C; CACNA1D: Calcium channel alpha1D; CACNA1G: Calcium channel alpha1G; 
CACNA2D3: Calcium channel alpha 2 delta subunit 3; TRP: Transient receptor potential; TRPV1: TRP vanilloid 1; TRPV2: TRP vanilloid 2; TRPV4: TRP vanilloid 4; TRPV6: 
TRP vanilloid 6; TRPM4: TRP melastatin 4; TRPA1: TRP ankyrin 1; PMCAs: Plasma membrane Ca2+ ATPases; NCKX3: potassium-dependent sodium/calcium exchanger 3. 

 

 
Figure 2. The expression of calcium-related proteins in EEC and EC cells. Calcium-related proteins in endometrial cells are divided into four categories: ① that are 
regulated by E2 in normal epithelial cells: TRPV1 and TRPA1; ② that are regulated by E2 in endometrial cancer cells: CACNA1D, CACNA1G, TRPV6, PMCA1 and NCKX3; ③ 

that are highly expressed in normal epithelial cells: CACNA2D3, TRPM4 and CaSR; and ④ that are highly expressed in cancer cells: TRPV2 and TRPV4. (Created with 
BioRender.com) 
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TRP vanilloid 2 (TRPV2) has an increased 
expression in type II endometrial cancer and 
correlates with worse progression-free survival. 
Ishikawa cells with TRPV2 overexpression showed a 
high migratory ability and sensitivity to cisplatin [78]. 

TRPV4 expression was higher in the EC group 
than in the normal epithelium group. Furthermore, 
TRPV4 could regulate migration and metastasis both 
in vitro and in vivo through cytoskeleton regulation 
and the Rho protein pathway [9]. In Hec-1A and 
Hec-1B cells, E2 rapidly induced cytoskeletal 
remodeling, which was mediated by ERα signaling 
[53]. However, there is no direct evidence indicating 
that E2 could activate TRPV4 and drive calcium 
current. In addition, the expression of transient 
receptor potential vanilloid 6 (TRPV6) was 
upregulated by E2 in both primary epithelial cells and 
Ishikawa cells and the increases were completely 
reversed with an ER antagonist [15]. 

TRP melastatin 4 (TRPM4) expression has been 
reported in several cancers and is involved in 
malignant transformation and immunity modulation 
[79-81]. Bioinformatics analysis based on The Cancer 
Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) gene expression data of EC tissue 
and normal endometrial tissue identified TRPM4 as a 
protective prognostic gene [82]. In detail, lower 
expression of TRPM4 was associated with a higher 
clinical stage, a more advanced grade, positive lymph 
node metastasis, myometrial invasion, worse 
recurrence free survival and overall survival [83]. 
Another membrane of the TRP family, transient 
receptor potential ankyrin 1 (TRPA1) was also 
positively regulated by E2 in rat endometrial cells. 
More studies on its mechanism are needed. 

Ca2+ pumps and exchangers 
PMCA1 and potassium-dependent sodium/ 

calcium exchanger 3 (NCKX3) are also crucial 
components of intracellular calcium homeostasis 
mainly by extruding calcium out of the cytosol. 
PMCA1 and NCKX3 were richly expressed in the 
endometrium especially in endometrial and glandular 
epithelial cells, while their expression was 
significantly increased at the proliferative phase 
compared to other phases. PMCA1 and NCKX3 were 
also detected in Ishikawa cells and their mRNA levels 
were markedly increased following E2 treatment [15, 
84]. The E2-induced increase in PMCA1 mRNA levels 
was completely reversed after pretreatment with ER 
antagonist [15]. All these results indicated that 
estrogen and its receptors might participate in the 
regulation of PMCA1 and NCKX3 levels both in 
endometrial epithelial cells and cancer cells and thus 
maintain calcium homeostasis. 

Other calcium-related genes are involved in the 
carcinogenesis or progression of EC. Calcium sensing 
receptor (CaSR) is a membrane of G-protein-coupled 
receptors. It can activate PLC and respond to 
intracellular Ca2+ fluctuations. CaSR might serve as a 
tumor suppressor because overexpression induced 
apoptosis but inhibited invasion of Ishikawa cells [85]. 

Ca2+ signal and endometrial cancer initiation 
and progression 

Calcium signaling could not only regulate the 
biological behaviors of cancer cells [86, 87], but also 
involve the carcinogenic process [88]. The oncogenic 
transformation of epithelial cells is a multistage 
process during which normal cells shift toward a 
cancerous state characterized by unlimited 
proliferation. As we can see in this review, estrogen 
regulates calcium signaling through rapid calcium 
influx and alteration of calcium-related protein 
expression in both normal epithelial and cancerous 
cells. Therefore, we will discuss the role of 
Ca2+ signals in carcinogenesis and cancer progression 
(e.g., proliferation, metastasis, cancer cell death and 
drug resistance). 

Cancer initiation 
Both extracellular and intracellular calcium ions 

have been demonstrated to play important roles in 
cancerous transformation. The interaction between 
oncogenic K-Ras and calmodulin is crucial for 
tumorigenicity through the suppression of the Wnt- 
Ca2+ signaling pathway [89]. In addition, intracellular 
and extracellular calcium ions at high concentrations 
could enhance ERα transcriptional activity in breast 
cancer in different ways [90]. First, intracellular 
calcium at physiological concentrations (μM) 
confers calmodulin (CaM) an active conformation to 
interact with ERα and enhances receptor-mediated 
transcription [91]. Second, intracellular calcium at 
hypercalcemic concentrations (mM), may directly 
bind to ERα [38]. Finally, high extracellular Ca2+ 
concentrations (>10 mM) found in metastatic bone 
lesions increase transcriptional activity of ERα by 
binding to CaSR at the cell membrane [92]. Depleting 
extracellular calcium in the growth medium by 
chelation or using calcium-depleted medium 
inhibited the neoplastic transformation of mouse JB6 
epidermal cells. Such a transformation could also be 
inhibited by nifedipine, an L-type CCB [93]. 
Furthermore, multiple drugs triggering calcium 
fluxes have been reported to reactivate epigenetically 
mediated suppression of tumor suppressor genes in 
colon cancer cells [94]. Based on these evidences, the 
association between CCBs usage (mainly nifedipine, 
amlodipine, verapamil and diltiazem) and the risk of 
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neoplasia has been widely discussed since the 1990s 
[95, 96]. However, there is no definitive evidence 
involving the association between cancer and CCBs 
use. 

Cell proliferation 
Calcium ions are closely related to cell 

proliferation. As early as the 1970s, calcium was 
thought to be a short regulator of cell growth [97]. 
Interestingly, normal cells require higher external free 
Ca2+ concentrations to induce proliferation than 
preneoplastic and neoplastic cells [98, 99]. External 
stimuli such as hormones, chemokines and 
neurotransmitters invoke intracellular calcium 
increases. Such increases in free calcium ions mainly 
bind to calmodulin (CaM) and form a Ca2+-CaM 
complex, which subsequently activates calmodulin- 
dependent protein kinases (CaMK) and leads to the 
transcriptional activation of NF-κB, nuclear factor of 
activated T-cells (NFAT) and cAMP response 
element-binding protein (CREB) [100-102]. In 
addition, CaMs and CaMK were reported to interact 
with cyclin-dependent protein kinases (CDKs) and 
regulate cell cycle events, thus affecting cell survival 
[103, 104]. 

Calcium influx via CACNA1D in Ishikawa cells 
was considered to induce the phosphorylation of 
ERK1/2 and activation of CREB [8]. CACNA1G has 
been proposed as a key regulator of cell cycle 
progression and survival [105]. Mibefradil is a T-type 
VGCC inhibitor and has been reported to reduce the 
viability of Hec-1A cells and stimulate proapoptotic 
factors [72]. The downregulation of TRPM4 resulted 
in an increase in the proportion of AN3CA cells in 
G2/M phase [83]. 

Metastasis 
Calcium signaling has been demonstrated to be 

crucial for regulating processes that occur during 
metastasis, including cancer cell migration and 
invasion. Adding calcium to the culture medium 
increased the migration of Ishikawa and AN3CA 
cells, which was reversed by a calcium chelating agent 
[9]. Coordinated rearrangements of the cytoskeleton 
and cell-matrix adhesion are required for cell 
migration. Sustained or transient increases in 
intracellular calcium ions activate Ca2+-dependent 
effectors, which can regulate focal adhesion proteins 
including integrins, paxillin, vinculin, talin, focal 
adhesion kinase (FAK) and Src family kinases [106]. 
Mechanosensitive TRPV4 channel could interact 
directly with cytoskeletons and subsequently induce 
rapid morphological changes [107]. Silencing of 
TRPV4 or pharmacological inhibition with its 
antagonist modulates the RhoA/ROCK1/LIMK/ 

cofilin pathway and further regulates the actin 
cytoskeleton and paxillin in Ishikawa cells and 
ultimately decreases the metastatic ability of this cell 
line [9]. 

Degradation of extracellular matrix (ECM) is 
essential for cancer invasion and distant metastasis. 
Ca2+ influx via TRPV2 can upregulate the expression 
of some invasive enzymes, such as matrix 
metalloproteinases and cathepsin B, which can 
degrade ECM and provide conditions for cancer 
invasion [108]. In addition, Ca2+ signaling may 
regulate epithelial-mesenchymal transition (EMT) 
induction [109]. TRPM4 silencing promotes AN3CA 
cell progression via the induction of several EMT 
markers, including E-cadherin, vimentin and 
N-cadherin [83]. 

Cancer cell death 
Either intracellular Ca2+ overload or perturbation 

of Ca2+ compartmentalization can cause toxicity to the 
cells and lead to cell death in the form of apoptosis, 
autophagy and necrosis [110]. Therefore, the 
regulation of activity and expression of certain 
calcium channels or pumps may be exploited for 
cancer treatment. It is generally believed that severe 
calcium dysregulation promotes necrotic death, 
whereas a moderate Ca2+ increase facilitates cell death 
through autography or apoptosis [111, 112]. Massive 
Ca2+ influx results in the activation of hydrolysis 
enzymes, the subsequent loss of membrane integrity 
and finally cell death through necrosis [113]. 

Aberrant Ca2+ concentrations always activate 
endoplasmic reticulum stress (ERS). Stress signals are 
directly or indirectly relayed from endoplasmic 
reticulum to the mitochondria and trigger cell 
apoptosis. On the one hand, Ca2+ released form the 
endoplasmic reticulum activates numerous pathways 
and subsequently evokes the release of caspase 
cofactors from mitochondria and promotes cell death 
[114]. On the other hand, the endoplasmic reticulum 
may communicate with mitochondria by direct 
contacts at mitochondria-associated endoplasmic 
reticulum membranes (MAMs) [112]. Ca2+ handling 
proteins at the MAM regions control Ca2+ transfer and 
affect cell apoptosis [112]. 

In addition, Ca2+ is a regulator of autophagy. 
Pharmacological application of the L-type VGCC 
inhibitor, nifedipine, promotes autophagy through 
mammalian target of rapamycin (mTOR) and the 
Beclin1 pathway in Hec-1A cells. Interestingly, adding 
the autophagy inhibitor 3-MA decreased the protein 
expression of CACNA1D and augmented nifedipine- 
induced cell apoptosis, suggesting that autophagy 
might serve as a protective mechanism for cell 
survival [115]. In summary, CACNA1D inhibitors are 



Int. J. Biol. Sci. 2022, Vol. 18 
 

 
https://www.ijbs.com 

1072 

considered as potential drug candidates in EC 
treatment. Cannabidiol increased the expression of 
cleaved poly ADP-ribose polymerase (c-PARP) and 
C/EBP homologous protein (CHOP) through TRPV1 
activation in Ishikawa cells. c-PARP is an enzyme 
involved in DNA repair and CHOP plays a key role in 
ERS-mediated apoptosis. 

Drug resistance 
Medications for endometrial cancer mainly 

include chemotherapeutic drugs and hormone 
therapy. The platinum-based chemotherapy regimen 
is the most commonly used in endometrial carcinoma, 
but the effective rate is not satisfactory [116]. 
Overexpression of TRPV2 increased the cisplatin 
cytotoxic effect in Ishikawa cells. The TRPV2 
activator, cannabidiol, also enhanced the cell-killing 
effect of cisplatin in TRPV2-transfected cells [78]. The 
detailed mechanism is still unknown. Usually, the 
mechanisms of chemotherapy resistance involving 
calcium-dependent pathways include drug efflux, 
evasion of cell death, increased DNA damage 
tolerance and dysregulation of certain critical genes 
[117]. Cannabidiol increased the drug retention of 
several chemotherapeutic agents and synergized with 
them to induce the apoptosis of glioblastoma cells via 
TRPV2-dependent Ca2+ influx [118]. In addition, 
cannabidiol induced the differentiation of glioma 
stem-like cells, activated autophagy and overcame 
carmustine resistance in a TRPV2-dependent manner 
[119]. Cannabidiol was also found to decrease the 
phosphorylation of nitric oxide synthase 3 (NOS3), 
increase the production of reactive oxygen species 
and thus reverse oxaliplatin resistance [120]. 

Since both rapid and slow regulation of calcium 
by estrogens exist in endometrial cells, it is interesting 
to investigate whether calcium ions link these two 
modes of estrogen. Interestingly, activation of protein 
kinase A plays an important role in regulating 
transient receptor potential (TRP) channel functions 
[121]. In addition, a two-pulse regimen of estrogen 
treatments has been developed to study the 
association between rapid and slow estrogen actions 
in human neuroblastoma cells. E2-BSA given in the 
first pulse for 20 minutes was followed by 
17β-estradiol in the second pulse for 2 hours. The 
results showed that E2-BSA could enhance the 
transcription of estrogen response element (ERE) 
initiated by the later administration of 17β-estradiol. 
This transcriptional activity was blocked by Ca2+ 
chelator, suggesting that calcium plays an important 
role in coupling the rapid and slow estrogen actions 
[122]. From this perspective, we consider the 
possibility of inhibiting estrogen actions by using 
CCBs. 

Modulators of calcium-related proteins 
Given the involvement of Ca2+ signaling in 

carcinogenesis and progression, specific 
pharmacological agents modulating Ca2+ channels, 
pumps and exchangers are regarded as druggable. 
The application of inhibitors or activators depends on 
whether the resultant alteration to Ca2+ promotes cell 
survival or death [123]. Strategies targeting Ca2+ 
signaling in endometrial cancer are illustrated in 
Figure 3. Pharmacological modulation of calcium 
channels, pumps or exchangers can affect cell 
functions and suppress tumor progression by 
disrupting calcium homeostasis in cancer cells [124, 
125]. As described above, a variety of calcium 
permeable ion channels are involved in uterine 
carcinogenesis and progression. The modulators of 
calcium channels that are altered in endometrial 
cancer cells are expected to be potential therapeutic 
drugs and are outlined in Table 2. 

VGCC inhibitors 
Clinically, VGCC inhibitors are used in the 

treatment of hypertension and other cardiovascular 
diseases by blocking calcium influx. These drugs are 
mainly divided into two categories: dihydropyridines 
(DHPs), such as nifedipine and amlodipine, and 
non-DHPs, such as diltiazem and verapamil. As 
increasing evidences suggest the important roles of 
VGCCs in many cancers, numerous investigators 
have attempted to repurpose FDA-approved VGCC 
inhibitors for cancer treatment [126]. As early as the 
1990s, nifedipine, verapamil and diltiazem were 
found to inhibit the growth of human astrocytoma 
U-373 MG cells and human neuroblastoma SK-N-MC 
cells [127]. Mibefradil, a T- and L-type Ca2+ channel 
blocker, was approved by FDA for hypertension in 
1997 and then withdrawn due to its interaction with 
other drugs. Surprisingly, mibefradil showed a 
promising potential to reduce tumor size and improve 
the survival rate in glioma animal models and 
pancreatic cancer xenografts [126, 128]. Therefore, 
mibefradil was repurposed for high-grade glioma 
cancer and pancreatic cancer treatment. NNC-55- 
0396, a derivative of mibefradil, was developed to 
overcome the side effects of its patient and inhibit 
tumor-induced angiogenesis in vitro and in vivo, thus 
appearing to be a promising drug [129]. 

In our previous studies, nifedipine was involved 
in the estrogen-induced calcium mobilization and 
phosphorylation of ERK in Ishikawa cells [18, 130]. In 
addition to the rapid response, nifedipine and 
mibefradil affect the proliferation, migration and 
apoptosis of endometrial carcinoma Hec-1A cells [72]. 
Nifedipine also regulated autophagy through the 
mTOR and Beclin1 pathways in Hec-1A cells 
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[115]. These results suggest that these CCBs may 
serve as drug candidates in targeted therapy of 

endometrial cancer. 

 

 
Figure 3. The role of calcium-related proteins in EC progression and potential strategies for EC treatment. A. Calcium channels affect cancer cell proliferation, 
cell death, metastasis and response to chemotherapeutic agents through different pathways in EC. Therefore, inhibitors or activators, have the potential for cancer treatment. It 
also shows the corresponding modulators of these calcium channels. B. Progestin also promotes cell apoptosis by regulating CACNA2D3 and ERS. Calcium channel blockers 
might generate synergistic anti-tumor effects with progestin in EC. C. Calcium channel modulators might enhance the delivery to the tumor site via modulating relaxation of 
vasculatures. TRPV2 activation by cannabidiol augments the effects of cisplatin in EC cells. (Created with BioRender.com) 

 

Table 2. Studies on drugs targeting EC-related Ca2+ channels/ exchangers/ pumps in cancer cells 

Target Drug Activator/ 
Inhibitor 

Effects on EC Effects on other cancer cells 
Studies in EC cells ref Studies in non-EC cells ref 

L-type 
VGCC 

Nifedipine inhibitor Nifedipine reduced the proliferation, invasion, 
apoptosis and promoted autophagy in Hec-1A cells 

[72,115] Nifedipine suppressed colon cancer progression [147] 

T-type 
VGCC 

Mibefradil inhibitor Mibefradil reduced the proliferation, invasion, 
apoptosis in Hec-1A cells 

[72] Inhibited proliferation and induced apoptosis in 
leukemia cells and glioblastoma cells. 
 

[126,1
28] 

NNC 55-0396 inhibitor ND  NNC 55-0396 suppressed tumor growth in 
glioblastoma 

[129] 

TRPV1/2 Cannabinoids inhibitor Cannabinoids reduced cell viability, activated 
apoptosis in type I cells (Ishikawa, MFE-280, HEC-1a 
and PCEM002 cell lines) and autophagy in mixed type 
EC cells (PCEM004a and PCEM004b cell lines), 
inhibited migration ability of ISK, PCEM004a and 
PCEM004b cells and improved chemotherapeutic 
drugs cytotoxic effects in ISK cells. 

[76, 78] Cannabinoids inhibited cell growth, migration and 
invasion of several cancer types, including brain, 
breast and prostate cancers 

[132-1
33] 

TRPV4 GSK1016790A activator GSK1016790A increased motility of ISK cells [9] GSK1016790A reduced the proliferation of tumor 
endothelial cells 

[134] 

HC067047 inhibitor HC067047 led to decreased motility of Hec-1A cells and 
peritoneal spreading sites in vivo. 

[9] HC067047 suppressed glioma migration and 
invasion 

[137] 

 SOR-C13  inhibitor ND  SOR-C13 reduced ovarian tumor growth in a mouse 
model. 

[138] 

TRPA1 HC-030031 inhibitor ND  HC-030031 alleviated pain in cancer patients. [139] 
PMCA [Pt(O,O′-acac)(γ

-acac)(DMS)] 
inhibitor ND  [Pt(O,O′-acac)(γ-acac)(DMS)] triggers rapid 

apoptosis in MCF-7 cells. 
[141] 

ND, not determined; EC: endometrial cancer; VGCC: Voltage-gated calcium ion channels; TRPV1: TRP vanilloid 1; TRPV2: TRP vanilloid 2; TRPV4: TRP vanilloid 4; TRPA1: 
TRP ankyrin 1; PMCAs: Plasma membrane Ca2+ ATPases.
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TRP channel regulators 
CBs have been widely studied for their potential 

anticancer effects since the 1970s [131]. In addition to 
the two Gi/o-coupled CB receptors, CB1 and CB2, CBs 
could also pharmacologically target TRPV1, TRPV2, 
TRPA1 and TRPM8 [132]. CBs may exert their 
antitumor effects in a CB1/2-independent manner, as 
shown in the human pancreatic cancer cell line MIA 
PaCa-2 [133]. Several kinds of CBs, including 
endocannabinoid, anandamide and cannabidiol, have 
been reported to induce cancer cell death in Ishikawa 
and Hec50co cells through TRPV1-mediated 
apoptosis [76]. Besides, high TRPV2 expression or its 
activation by cannabidiol was able to enhance 
chemotherapeutic drug effects in Ishikawa cells [78]. 

As TRPV4 was reported to normalize the tumor 
vasculature in vivo, its newly developed agonist, 
GSK1016790A, may help improve therapy efficacy by 
augmenting the delivery of cytotoxic agents to the 
tumor mass [134]. Interestingly, TRPV4 exerts an 
impact on cell migration by regulating the actin 
cytoskeleton in gastric cancer, ovarian cancer, glioma 
cancer cells and endometrial cancer [9, 135-137]. 
Pharmacological inhibition with HC067047 or 
knockdown of TRPV4 inhibits endometrial cancer 
metastasis, as shown in glioma cells, thus having the 
potential to be repurposed for EC therapy [9, 137]. 
SOR-C13, a TRPV6 calcium channel inhibitor, 
significantly reduces ovarian tumor growth in vivo 
and thus enters a phase I human clinical trial in 
patients with advanced ovarian cancers 
overexpressing TRPV6 [138]. HC-030031 is a potent 
blocker of TRPA1 and can relieve ongoing pain in a 
breast cancer pain model [139]. 

Ca2+-ATPase inhibitors 
PMCAs play an important role in pumping 

Ca2+ out of the cell, therefore, they can be targeted by 
certain inhibitors to generate toxic Ca2+ concentrations 
for cell death [140]. [Pt(O,O′-acac)(γ-acac)(DMS)], a 
selective PMCA inhibitor, was shown to alter 
intracellular calcium homeostasis and trigger rapid 
apoptosis in MCF-7 cells [141]. 

Potential applications of calcium channel 
modulators for cancer treatment 

Currently, the potential application of CCBs is 
focused on combination with existing treatments, 
such as chemotherapy or immunotherapy. Targeting 
Ca2+ signaling of stromal cells in the TME, such as 
immune cells and tumor endothelial cells, is an 
emerging strategy and can augment the effects of 
immunotherapy and chemotherapy [134, 142]. The 
synergistic administration of DHPs (lercanidipine and 
amlodipine) and chemotherapeutic drugs 

(doxorubicin, vincristine and topotecan) has been 
reported to induce cell apoptosis and autophagy in 
gastric cancer cells, neuroblastoma cells and 
multidrug-resistant leukemia cells [143-145]. 
Verapamil has been well-known to reverse multidrug 
resistance by directly binding to P-glycoprotein (P-gp) 
and thus decreasing its expression [146]. Another 
reason for the synergistic efficacy might be that 
blocking Ca2+ signaling in vascular endothelial cells 
increases the delivery of chemotherapeutic agents to 
the tumor site. The combination of an activator of 
TRPV4 with cisplatin could increase the delivery of 
cytotoxic agents to the tumor site and significantly 
suppress tumor growth [134]. Programmed death 1 
(PD-1) and its ligand (PD-L1) are important targets of 
immunotherapy. Nifedipine and amlodipine could 
enhance the effects of immunotherapy by depleting 
PD-L1 expression, and the former even inhibited the 
expression of PD-1 in T lymphocytes. By mimicking 
the role of PD-1/PD-L1 inhibitors in tumors, CCBs 
cooperate with anti-PD-1 therapy in breast cancer, 
colorectal cancer and colon cancer [142, 147]. Chemo-
therapy and immunotherapy are also important 
adjuvant therapeutic methods for endometrial cancer. 
Appropriate antihypertensive drugs in patients with 
hypertension might benefit cancer treatment. 

Progestin is a viable option for fertility-sparing 
treatment of patients with early EC and palliative 
treatment of women with advanced EC. Progestin is 
reported to rapidly activate intracellular calcium 
increases in multiple cancer cells, such as triple 
negative breast cancer [148], oral squamous cancer 
[149] and endometrial cancer [73]. Ishikawa cells 
treated with medroxyprogesterone acetate (MPA) 
showed increased activation of the ERS pathway. 
Meanwhile, the ERS-related molecules, CHOP and 
HERPUD1, were significantly upregulated [150]. 
Alterations in intracellular calcium concentrations 
often induce ERS and activate downstream pathways. 
Severe and prolonged ERS leads to cell death. The 
VGCC inhibitors, verapamil and mibefradil were 
reported to facilitate cell death via ERS activation in 
myeloma cells and C2C12 myoblasts [151, 152]. 
Furthermore, progesterone inhibited cell growth and 
promoted apoptosis via CACNA2D3 in Ishikawa cells 
[73]. In addition, four progesterone derivatives were 
reported to have binding sites on P-gp, which were 
distinct and nonexclusive with the modulating sites of 
verapamil. Progesterone, in combination with 
verapamil, exhibited synergetic activities to induce 
P-gp ATPase activity and further reverse MDR in a 
highly resistant tumor cell line [153]. These results 
provide a foundation for future application of 
coadministration of progesterone and calcium 
channel blockers. 
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The application of CCBs in endometrial cancer 
treatment depends on a variety of factors. The tissue 
distribution of calcium channels/pumps/exchangers 
and possible side reactions might be an important 
consideration. Drugs targeting certain factors with 
widespread expression are likely to be associated with 
generalized toxicity, as they will damage normal cells. 
After all, VGCC inhibitors have a long history in the 
clinical treatment of hypertension by blocking VGCCs 
on vascular endothelial cells. In the majority of 
studies, repurposing VGCC inhibitors for cancer 
treatment alone is usually at a much higher dose than 
is traditionally used to treat hypertension. Therefore, 
new drug delivery and formulation methods should 
be exploited. Nanoscale therapeutic delivery systems 
wrapping CCBs are expected as potential future 
medicines by increasing accumulation at the tumor 
site. 

Conclusion 
Dysregulated Ca2+ homeostasis plays an 

important role in the occurrence and progression of 
endometrial cancer. E2 rapidly induces an increase in 
intracellular calcium and upregulates some of the 
calcium channels/pumps/exchangers afterwards. 
Membrane estrogen receptors and downstream 
kinase cascades participate in the rapid response and 
affect cell function mainly by activating gene 
transcription. The role of the Ca2+ signaling in tumor 
onset and progression goes beyond the cancer cell 
itself and may also involve the regulation of the TME. 
Certain calcium channel modulators are involved in 
both rapid E2-induced intracellular calcium increases 
and Ca2+-related biological behavior changes in 
endometrial cancer. It has the potential for CCBs to be 
repurposed alone or in combination with existing 
toxic agents for endometrial cancer therapy. 
Furthermore, structure-based rational transformation 
of CCBs, aiming to target specific cancer cells and 
reduce their side effects, will likely provide promising 
leads for EC treatment in the future. 
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